This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

The Infrared Spectra (4000-50 cm⁻¹) of Complexes of 2,2'-Bipyridine-N,N'-Dioxide and its Perdeuterated Analogue with Metal(II) Perchlorates of the First Transition Series

D. A. Thornton^a; G. M. Watkins^a ^a Department of Chemistry, University of Cape Town, Rondebosch, South Africa

To cite this Article Thornton, D. A. and Watkins, G. M.(1992) 'The Infrared Spectra (4000-50 cm⁻¹) of Complexes of 2,2'-Bipyridine-N,N'-Dioxide and its Perdeuterated Analogue with Metal(II) Perchlorates of the First Transition Series', Journal of Coordination Chemistry, 25: 4, 317 – 326 **To link to this Article: DOI:** 10.1080/00958979209409205

URL: http://dx.doi.org/10.1080/00958979209409205

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THE INFRARED SPECTRA (4000-50 cm⁻¹) OF COMPLEXES OF 2,2'-BIPYRIDINE-*N*,*N*'-DIOXIDE AND ITS PERDEUTERATED ANALOGUE WITH METAL(II) PERCHLORATES OF THE FIRST TRANSITION SERIES

D. A. THORNTON* and G. M. WATKINS*

Department of Chemistry, University of Cape Town, Rondebosch 7700, South Africa

(Received August 30, 1991)

A full infrared assignment $(4000-50 \text{ cm}^{-1})$ for the complexes $[M(bipyO_2)_3](ClO_4)_2 \cdot l_2^1 H_2O$ (M=Mn, Co, Ni, Cu, Zn; bipy = 2,2'-bipyridine-N,N'-dioxide) and their perdeuterated analogues is presente.² Several ligand modes reflect metal sensitivity, with a strong coupling between vM-O and ligand mode 6a in: all but the Cu complex. It is proposed that the decoupling of these vibrations in the Cu complex is a result of Jahn-Teller distortion. Attempts to form the Fe(II) complex result in oxidation to Fc(III).

Keywords: Infrared spectra, 2,2'-bipyridine-N,N'-dioxide, deuteration, metal(II) perchlorates

INTRODUCTION

2,2'-Bipyridine-N,N'-dioxide (bipyO₂) has been quite extensively employed as a ligand,¹ but no isotope spectroscopic study has yet been reported. Several studies of M(II) *tris*-bipyO₂ complexes of the metals Mn, Co, Ni, Cu and Zn are to be found in the literature.²⁻⁶ Of these, the only papers to report vM-O assignments are those of Vinciguerra *et al.*³ and Ahuja and Singh.⁵ No assignment of the vibrations below the M-O stretches are to be found in the literature.

BipyO₂ coordinates through both oxygens in these complexes, to yield a stable seven-membered chelate ring in which the two pyridyl rings are twisted through a dihedral angle of some 67°.⁷ The M–O–N angle in [Ni(bipyO₂)₃](ClO₄)₂ is calculated to be 117°⁷ {in [La(bipyO₂)₄](ClO₄)₃ the M–O–N angle is crystallographically determined to be 123°⁸}, which is typical of an aromatic *N*-oxide. While this angle is generally accepted as evidence for sp^2 hybridization of the oxygen (*i.e.*, the two lone pairs plus the N–O bond pair, with the third lone pair in a *p* orbital available for π -interaction with the pyridine ring) and so indicating a significant contribution of the canonical form (*II*) (Figure 1) in the complex, Ng *et al.*⁹ disagree. They note that if the π -interaction is important then the planes of the M–O–N moiety and the pyridine ring should be coincident. Since this orientation is between 34° and 93° for a wide range of pyO complexes which have been crystallographically examined, Ng *et al.* suggested that this is evidence of distorted sp^3 hybridization, resulting from the fact that forcing the M–O–N and pyridine rings into coincidence would maximize the steric interference of the aromatic ring with the other ligands on the metal atom.⁹

^{*} Authors for correspondence.

FIGURE 1 Resonance structures of pyridine-N-oxide.

Considering the high s character of the oxygen orbital,^{9,10} delocalization of the second lone pair at the oxygen into the aromatic ring is retarded on the grounds of the poor geometry and the energetics involved. Furthermore, overlap of the second lone pair with the acceptor of the metal atom is considered to be energetically poor since a positive charge on the nitrogen would reduce electron flow from the oxygen.^{9,10}

The *N*-oxides are therefore poorer π acceptors and weaker σ donors than their imine parents. Although bidentate bipyO₂ gives rise to a stronger ligand field than that of pyO, it does not have sufficient field strength to cause the spin-pairing that is found for complexes of bipy and phen^{4,11} (Table I). Any metal-sensitive vibration in the metal(II) complexes of bipyO₂ is then expected to follow more precisely the Irving–Williams series (Mn < Fe < Co < Ni < Cu > Zn).¹² In particular, the Fe(II) complex is expected to be high spin {as in the complex [Fe(pyO)₆](ClO₄)₂}, but we were unable to synthesize this compound (see below).

		high spin		low	spin
ligand	quinO	руО	bipyO ₂	ру	bipy
$10Dq(cm^{-1})^{*}$	7900	8400	8600	11500	11500
Reference	[11]	[4]	[4]	[4]	[4]

 TABLE I

 Literature values of 10Dq for several aromatic imines and their N-oxides.

^a For Ni²⁺ cation.

EXPERIMENTAL

The infrared spectra were recorded on a Perkin Elmer 983 spectrophotometer using both Nujol mulls (2000 to 200 cm^{-1}) and hexachlorobutadiene mulls (4000 to 2000 cm⁻¹ and 1500 to 1200 cm⁻¹) between CsI plates. Far-infrared spectra were recorded in Nujol mulls (500 to 50 cm^{-1}) between polyethylene plates on a Digilab FTS 16B/D interferometer. The ligands were prepared as previously described.¹³

IR STUDIES

Preparation of $[M(bipyO_2)_3](ClO_4)_2 \cdot 1\frac{1}{2}H_2O$ (M = Mn, Co, Ni, Cu, Zn)

Two cm³ of a hot aqueous solution of 0.1 g (0.27 mmol) of the metal perchlorate (as the hydrated salt) was added to a hot solution of 0.15 g (0.81 mmol; 3:1 mole ratio) of 2,2'-bipyridine-N,N'-dioxide in 5 cm³ of water, with stirring. On cooling, the precipitate was filtered and washed with 2 cm³ of cold water. The complex was recrystallized from a minimum amount of hot water and dried over silica gel under reduced pressure. Yields of between 65 and 92% were obtained. Microanalytical data are given in Table II.

The deuterated complexes were prepared as for their $-d_0$ analogues, using one-half quantities of reactants. Yields of between 70 and 87% were obtained. Micro-analytical data are given in Table II.

		Ex	perimer	tal	C	alculate	ed
Complex	Colour	%C	%H	%N	%C	%Н	%N
$[Mn(bipyO_3)](ClO_4), \cdot l_3^1H_3O^a$	burnt orange	42.40	3.20	9.90	42.62	3.22	9.94
[Co(bipyO ₂),](ClO ₄), 1 ¹ / ₂ H,O	brick red	43.35	3.10	9.85	42.42	3.20	9.89
$[Ni(bipyO_{1})](ClO_{1}), \cdot 1 H, O$	lime green	42.30	3.15	9.95	42.43	3.20	9.90
$[Cu(bipyO_2),](ClO_4), \cdot 1, H, O$	light green	42.50	3.10	9.90	42.19	3.19	9.84
$[Zn(bipyO_2)_3](ClO_4)_2 \cdot l_2^1 H_2O$	white	42.15	3.20	9.80	42.10	3.18	9.82
$[Mn(bipy-d_8O_2)_3](ClO_4)_2 \cdot 1\frac{1}{2}H_2O^4$	burnt orange	41.60	3.10	9.60	41.43	3.13	9.66
$[Co(bipy-d_8O_2)_3](ClO_4)_2 \cdot l_2^1H_2O$	brick red	41.30	3.15	9.65	41.25	3.12	9.62
$[Ni(bipy-d_8O_2)_3](ClO_4)_2 \cdot l_2^1H_2O$	lime green	41.40	3.10	9.65	41.26	3.12	9.65
$[Cu(bipy-d_8O_2)_3](ClO_4)_2 \cdot 1_2^1H_2O_4$	light green	41.10	3.00	9.65	41.03	3.10	9.57
$[Zn(bipy-d_8O_2)_3](ClO_4)_2 \cdot 1\frac{1}{2}H_2O^a$	white	41.10	3.10	9.65	40.93	3.09	9.55

TABLE II Microanalyses of $M(II)(ClO_4)_2$ complexes of bipyO₂ and bipy- d_8O_2 .

" Light sensitive.

RESULTS AND DISCUSSION

 $[Fe(bipyO_2)_3](ClO_4)_2$ has not been reported in the literature and repeated attempts to prepare this complex and its fully deuterated analogue (under nitrogen) were unsuccessful as the infrared spectrum clearly showed oxidation to Fe(II) {two vM-O at 412 cm⁻¹ and 380 cm⁻¹; literature 408 cm⁻¹ and 377 cm⁻¹ for the $[Fe(bipyO_2)_3]^{3+}$ cation³}. A further difficulty experienced arose from the ability of the Fe(III) complex to be formed with more than three moles of bipyO₂ per mole of iron.⁴

The full vibrational assignments for the metal(II) complexes of bipyO₂ and its fully deuterated analogue are based upon the assignments of the free ligand,¹³ and are presented in Tables III and IV. The far-infrared assignments (below 625 cm^{-1}) reflecting the deuteration shifts, are presented in Table V.

As was observed for the bipy and phen complexes,¹⁴ the bands arising from a common origin within the localized ligand symmetry are not completely resolved. Except for the Cu(II) complexes, only three bands (these being vN-O, modes 7a' and 7a, and γ C-H, mode 11) are split in the bipyO₂ complexes, while only one is split in the bipy-d₈O₂ complexes (the vring mode 19b).

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Mn	Co	Ni	Cu	Zn		Assignment
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3596 mbr	3592 mbr	3591 mbr	3562 mbr	3596 mbr	}	vO-H(H ₂ O)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3512 mbr	3506 mbr	3480 mbr	3460 mbr	3511 mbr	J	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3220 yw	3220 yyw		3220 yyw	3220 yyw		comb
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3123 m	3123 m	3128 m	3128 m	3125 m		20a(vC-H)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3105 m	3107 m			3109 m		20b(vC-H)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.01.11	3092 ms				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3092 msh	3087 msh	}	3088 ms	3095 m		20a' and 20b'(vC-H)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3057 msh	3060 msh	3060 m	3059 m	3060 m		2(vC-H)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3051 m	3045 m			3050 m		2' and $7b'(vC-H)$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3034 mwsh	20.2.11	3038 msh	3038 msh			7b'(vC-H)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2986 yw	2990 w	2988 wsh	2990 w	2988 wsh	۲	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2920 vw	2930 w	2930 w	2923 w	2928 w		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2860 xw	2856 w	2856 w	2860 w	2855 w		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2783 w	2788 w	2783 w	2783 w	2782 w		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2733 xw	2730 xxx	2732 vw	2730 vw	2735 vw		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2651 w	2638 w	2642 vw	2640 vw	2652 w		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2455 wsh	2464 wsh	2456 wsh	2460 w	2455 w		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2435 will	2404 whr	2456 wan	2400 W	2400 W		comb
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2333 var	2320 v.v.	2379 vw	2329 838	2333 vw	1	como
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2000 VW	2263 w	2264 w	2265 w	2355 VII		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2000 VW	2036 wm	2039.um	2033 wm	2047 um		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2040 wh	2000 win	2005 win	2055 wiii	2008 whr		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1057	2005 w	1056 w	1060	1060 web		
	1937 W	1934 W	1750 W	1900 W	1018		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1910 \\	1910 VW	19 12	10.10	1910 W		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1042 W	1045 W	1042 W	1640 W	1041 W	j	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1628 mbr	1626 mbr	1630 mbr	103/ 103/	1631 mbr		$vO-H(H_{2}O)$ and 8a' (vring)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1020 1101	1020 1101	1050 1101	1626 mbr ∫	1051 1101		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1605 w	1606 wsh	1605 wsh	1602 w	1604 wsh		8b'(vring) and 8a(vring)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1573 w	1572 w	1574 w	1574 w	1574 w		8b(vring)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1506 wm	1506 w	1505 w	1505 w	1505 w		19a'(αC-H)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1480 ssh			, , , , , , , , , , , , , , , , , , ,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1479 s	1474 s	1474 s	Į	1474 s		19a(uC-H)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1474 s ∫			X Y
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1441 s	1440 s	1442 s	1440 s	1442 s		19b'(αC-H)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1426 s	1424 s	1425 s	1425 s	1426 s		$19b(\alpha C-H)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1370 vw	1375 vw	1370 vw	1375 vw	1368 vw		3'(aC-H)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1313 vw	1317 w	1317 yw	1316 vw	1317 vw		14'(vring)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1293 w	1292 w	1292 w	1790 w	1293 w		14(vring)
$ \begin{array}{c} 1231 \text{ ws} \\ 1231 \text{ ssh} \\ 1226 \text{ vssh} \end{array} \left. \begin{array}{c} 1231 \text{ ssh} \\ 1221 \text{ vs} \end{array} \right\} 1223 \text{ vs} \\ 1211 \text{ vssh} \\ 1216 \text{ vs} \end{array} \left. \begin{array}{c} 1211 \text{ vssh} \\ 1203 \text{ vs} \end{array} \right\} 1211 \text{ vssh} \\ 1211 \text{ vssh} \\ 1209 \text{ vs} \end{array} \left. \begin{array}{c} 1216 \text{ vs} \\ 1209 \text{ vs} \end{array} \right\} 1211 \text{ vs} \\ 1209 \text{ vs} \end{array} \right\} 1211 \text{ vs} \\ 1209 \text{ vs} \end{array} \left. \begin{array}{c} 1211 \text{ vs} \\ 1209 \text{ vs} \end{array} \right\} 1211 \text{ vs} \\ 1209 \text{ vs} \end{array} \right\} 1211 \text{ vs} \\ 1166 \text{ ssh} 15'(\alpha \text{C-H}) \\ 1164 \text{ s} \end{array} \right\} $	1257 ms	1258 ms	1258 ms	1257 ms	1258 ms		A(vinter-ring)
$ \begin{array}{c} 1226 \text{ vssh} \\ 1226 \text{ vssh} \\ 1226 \text{ vssh} \\ 1211 \text{ vssh} \\ 1211 \text{ vssh} \\ 1216 \text{ vs} \\ 1203 \text{ vs} \\ 1203 \text{ vs} \\ 1209 \text{ vs} \\ 1166 \text{ ssh} \\ 1166 \text{ ssh} \\ 15'(aC-H) \\ 1163 \text{ s} \\ 1161 \text{ ssh} \\ 1111 \text{ ssh} \\ 1111 \text{ ssh} \\ 1111 \text{ ssh} \\ 1110 \text{ ssh} \\ 1100 \text$	1232 vs	1230 mb	1250 ms	1207 1115	1250 1115		n(miner mig)
$ \begin{array}{c} 1226 \text{ vssh} \\ 1221 \text{ vs} \\ 1211 \text{ vssh} \\ 1216 \text{ vs} \\ 1203 \text{ vs} \end{array} \right\} \begin{array}{c} 1216 \text{ vs} \\ 1211 \text{ vs} \\ 1209 \text{ vs} \end{array} \right\} \begin{array}{c} 1216 \text{ vs} \\ 1211 \text{ vs} \\ 1209 \text{ vs} \end{array} \right\} \begin{array}{c} 1211 \text{ vs} \\ 1211 \text{ vs} \\ 1209 \text{ vs} \end{array} \right\} \begin{array}{c} 1211 \text{ vs} \\ 1209 \text{ vs} \\ 1209 \text{ vs} \end{array} \right\} \begin{array}{c} 1211 \text{ vs} \\ 1211 \text{ vs} \\ 1209 \text{ vs} \end{array} \right\} \begin{array}{c} 1211 \text{ vs} \\ 1209 \text{ vs} \\ 1165 \text{ s} \\ 1165 \text{ s} \\ 1165 \text{ s} \\ 1163 \text{ s} \\ 1161 \text{ s} \\ 1111 \text{ ssh} \end{array} \begin{array}{c} 1163 \text{ s} \\ 1163 \text{ s} \\ 1110 \text{ ssh} \end{array}$		1201 331	1223.5	1231 xs	1229 5		7a'(vN-O/vring)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1226 yssh	1221 55	{				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1220 (3311)	1211 veeh		1216.5			
$ \begin{array}{c} 1203 \text{ vs} \\ 1203 \text{ vs} \\ 1209 \text{ vs} \\ 1165 \text{ s} \\ 1165 \text{ s} \\ 1165 \text{ s} \\ 1165 \text{ s} \\ 1163 \text{ s} \\ 1161 \text{ s} \\ 1161 \text{ s} \\ 1163 \text{ s} \\ 1161 \text{ s} \\ 1110 \text{ sch} \\ 1110 \text{ sch} \\ 1110 \text{ sch} \\ 110 \text{ sch} \\ $	1216 vs		1211 10		1211 119		7a(vN-O/vring)
$ \begin{cases} 1165 \text{ s} & 1163 \text{ s} & 1166 \text{ ssh} & 15'(\alpha \text{C}-\text{H}) \\ 1164 \text{ s} & 1158 \text{ s} \\ 1163 \text{ s} & 1161 \text{ s} & 1163 \text{ s} & 15(\alpha \text{C}-\text{H}) \\ 1111 \text{ ssh} & 1110 \text{ ssh} & 1110 \text{ ssh} & 9b'(\alpha \text{C}-\text{H}) \\ \end{cases} $	121033	1203 10	1211.13	1200 vs	1211 13		
$\begin{cases} 1164 \text{ s} \\ 1163 \text{ s} \\ 1161 \text{ s} \\ 1111 \text{ ssh} \\ 1111 \text{ ssh} \\ 1111 \text{ ssh} \\ 1110 \text{ ssh} \\ 1100 $		1165 -	- 1163 e	120/13	1166 cch		15'(aC-H)
$\int 1163 s \qquad 1161 s \qquad 1163 s \qquad 150 s$ $1163 s \qquad 1161 s \qquad 1163 s \qquad 15(\alpha C-H)$ $1111 ssh \qquad 1110 ssh \qquad 1110 ssh \qquad 1110 ssh \qquad 9b'(\alpha C-H)$	11616	11023	11023	1158 \$	1100 3311		10 (uc 11)
1111 ssh 1110 ssh 1110 ssh 1110 ssh 9b'(αC -H)	11043 S	1163 •	1161 \$	11503	1163 .		15(aC-H)
		1111 ech	1111 ssh	1110 ssh	1110 ssh		9b'(aC-H)

TABLE III Infrared assignment (4000-350 cm⁻¹) of [M(bipyO₂)₃](ClO₄)₂· $l_2^1H_2O$ complexes.

	1032
	1004
	965
	961
	930
	925
	890
	849
	835
11	787
ury 20	779
Janua	773
23	750
5	737
17	735
At:	630
eq	623
oad	584
mlc	559
Dow	540

TABLE III (continued)

Mn	Со	Ni	Cu	Zn	Assignment
1095 vsbr	1090 vsbr	1088 vsbr	1085 vsbr	1083 vsbr	
				}	$v_{\star}(ClO_{\star})$ and $9b(\alpha C-H)$
	1061 ssh	1060 ssh	1057 ssh	1056 ssh	
	1050 msh	1048 msh	1049 msh	1048 msh	18b'(αC-H)
1032 m	1032 m	1035 m	1033 m	1033 m	18b(αC-H)
1004 w	1005 mw	1003 mw	1004 mw	1003 m	l(vring)
965 wsh	ì		964 w)		5′(γC–H)
	962 w }	962 w	}	959 w	
961 m	J		952 w J		5(γC-H)
930 w	930 w	932 w	931 w	932 w	v _s (ClO ₄)
925 wsh	927 wsh	929 w			10b'(γC-H)
890 w	891 vw	889 vw	-891 vw	885 vw	10b(γC-H)
849 s	847 s	848 s	848 s	848 s	12(vring/vN-O)
835 s	834 s	835 s	834 s	834 s	12'(vring/vN-O)
787 msh	788 msh	787 msh		786 msh	l1′(γC-H)
	780 vs		1		
ر ^{779 vs}	1	780 vs	1)	
}	776 vs 👌	}	775 vsbr	775 vs }	I1(γC-H)
773 vs		776 vs J	}	J	
	773 vs '				
750 w	751 w	752 w	751 w	751 w	l'(vring)
733 m	• 733 m	733 m	732 w	733 w	4'(yring)
725 ms	726 s	723 ms	723 ms	722 ms	4(yring)
639 w	638 w	638 w	637 w	639 w	comb
623 s	624 s	624 s	623 s	624 s	δ(ClO₄)
584 s	582 s	584 s	582 s	581 s	6a(vring)
559 w	559 w	559 w	559 w	560 w	comb
540 s	542 m	542 m	546 mw	539 ms	6b(vring)
527 m			531 mwsh		6b'(vring)
517 s	518 s	518 s	518 s	518 s	16b and 16b'($\gamma ring/\gamma N-O$)
481 m	479 m	479 m	479 m	479 m	18a'(αN-O)
452 s	453 s	452 s	452 s	452 s	18a(αN–O)

s = strong, m = medium, w = weak, v = very, sh = shoulder, br = broad, comb = combination.

Several fundamentals reflect metal sensitivity: modes $18a(-d_8)$, $18b(-d_0)$, 17a, $16b'(-d_8)$, $14(-d_8)$, 6a and 6b. The non-benzenoid inter-ring modes Γ , Δ , E and Z also show metal sensitivity in bipyO₂. The inter-ring stretch, mode A, is not metal-sensitive, while the last inter-ring mode, B, is masked by the highest M-O stretch. Two combination bands at *ca* 1940 cm⁻¹ (- d_8) and 1840 cm⁻¹ (- d_0) also reveal metal sensitivity, which is most probably a result of the fact that one of their components is one of the metal-sensitive fundamentals already mentioned.

The tetragonal Jahn-Teller distortion experienced by the Cu(II) complex with its perturbed localized symmetry of the ligand is reflected by the splitting of the ligand bands $19a(-d_0)$, $19b(-d_8)$, $8a'(-d_0)$, 7a, $7a'(-d_8)$, $8a'(-d_0)$ and Γ (Tables III and IV).

The assignment of the M-O fundamentals is rendered difficult by the presence of eight ligand modes below 400 cm^{-1} ¹³ (Table V). Vinciguerra *et al.* assigned two bands to vM-O in the infrared spectra of the metal(II) complexes, one found

between 392 and 355 cm^{-1} and the other between 354 and 430 cm^{-1} .³ They made this assignment on the (incorrect) basis that no ligand band is observed between the frequencies 434 and 340 cm^{-1} . Ahuja and Singh⁵ only considered the higher frequency band as being suitable for assignment to vM-O since they observed a ligand band at *ca* 360 cm^{-1} which they considered to give rise to the band between 354 and 340 cm^{-1} in the complex spectra (this ligand band has been identified in the present work as mode $6a^{13}$).

Mn	Co	Ni	Cu	Zn	Assignment
3597 wbr	3593 wbr	3593 wbr	3596 wbr	^{3593 wbr} }	vO-H(H ₂ O)
3512 wbr	3506 wbr	3506 wbr	3512 wbr	3509 wbr	
3135 vw	3150 vw	3160 vw	3152 vw	3150 vw	
	2950 vw		2956 vw	2950 vw	
2917 vw	2923 w	2920 vw	2924 w	2920 w	
	2852 w		2846 w	2850 w	comb
2778 vw	2779 w	2771 vw	2778 w	2776 vw	
2503 vw	2496 w	2497 w	2500 w	2504 w	
2323 wm	2323 wm	2325 wm	2324 w	2324 w	20a(vC-D)
2309 wsh	2308 w	2307 wm	2309 wm	2309 w	20b and 20a'(vC-D)
2290 wsh	2285 wsh	2287 wm	2290 w	2285 wsh	20b' and 2'(vC-D)
2283 w	2280 wm	2279 wm	2281 w	2281 w	2 and 7b(vC-D)
2185 w	2185 vw	2190 vw		1	
	2110 vw	2113 vw	2115 vw	2119 w	
2045 w	2040 wsh	2045 wsh	2040 wsh	2048 w	
	2020 w	2018 w	2022 w	2016 w	comb
	1944 w	1948 w	1946 w	1943 w	
1920 w		1916 w	1920 w	1917 w 📕	
1628 ms	1626 ms	1627 ms	1626 ms	1627 ms	δ O-H(H ₂ O) and 8a'(vring)
1575 w	1574 w	1574 w	1574 w	1575 w	8a and 8b(vring)
1542 m	1543 m	1544 m	1543 m	1544 m	8b(vring)
1438 mw	1438 mw	1439 mw	1439 mw	1439 m	19a'(vring)
1391 wsh	1391 vwsh	1390 vwsh	1392 wsh	1393 wsh	comb
1370 ms	1369 s	1369 s	1370 s	1370 s	19b'(vring)
1350 s	1350 vs	1351 vs	1349 s	1351 s	19a(vring)
1330 ssh			1332 ssh	1332 ssh	
}	1321 vs	1323 vs	}	}	19b(vring)
1324 s			1322 vs J	1326 vs J	
1310 w				1308 mwsh	14'(vring)
1224 mw	1226 mw	1227 wm	1226 wm	1226 wm	14(vring)
1207 s	1207 ms	1208 ms	1207 ms	1208 ms	A(vinter-ring)
			1187 msh	```	
1179 vs	1174 ssh	1176 ssh	}	1	7a'(vN–O/vring)
•			1172 vs	1173 vs	
1175 vs	1166 vs	1173 vs	1166 vs	ز	7a(vN-O/vring)
1110 ssh		1109 ssh	1111 ssh	ر 1113 ssh	
1098 vsbr	1095 vsbr	1094 vsbr	1094 vsbr	1094 vsbr (
			1080 vssh	1084 vssh	$v_{a}(ClO_{4})$ and $3'(\alpha C - D)$
		1056 ssh	1050 mssh	1055 ssh J	
			· · · · ·	and the second second second	

TABLE IV Infrared assignment (4000–350 cm⁻¹) of $[M(bipy-d_8O_2)_3](ClO_4)_2 \cdot l_2^4H_2O$ complexes.

Mn	Со	Ni	Cu	Zn	Assignment
1024 w	1025 mwsh		1025 wsh		3(aC-D)
1010 ms	1010 ms	1010 ms	1010 ms	1009 ms	l(vring)
929 w	930 w	930 w	930 w	930 w	
					$v_{s}(ClO_{4})$
926 vwsh	926 w	926 w	926 wsh	926 wsh	j
881 s	879 s	880 ssh	880 s	880 s	9b'(αC–D)
874 s	873 s	873 s	874 s	874 s	9b(αC-D)
864 w	864 w	864 w	864 w	864 w	15′(αC–D)
850 w	850 w	850 w	850 w	850 w	15(aC-D)
835 m	835 ms	833 m	835 m	835 m	5(γC-D)
824 w	824 w	825 w	824 w	825 w	18b'(αC-D)
791 s	788 s	789 s	788 s	789 s	18b(αC-D)
776 vs	776 s	776 s	776 vs	776 vs	12(vring/vN-O)
765 s	766 m	766 m	766 ms	766 mis	12'(vring/vN-O)
738 m	740 w	738 w	739 w	740 w	10b'(γC–D)
723 m	723 w	723 w	722 w	723 w	10b(γC-D)
688 wm	688 wm	687 wm	688 wm	687 wm	l'(vring)
650 wm	651 wm	650 wm	651 wm	651 wm	10a(γC-D)
640 wsh	639 w	639 w	639 vw	637 w	10a'(γC–D)
625 vs	624 vs	622 vs	622 vs	622 vs	$\delta(\text{ClO}_4)$ and $4(\gamma \text{ring})$
619 ssh	619 ssh	617 ssh	616 ssh	617 ssh	11(γC–D)
611 s	61 I s	609 s	611 s	611 s	4(γring)
566 ms	. 566 ms	565 s	566 s	564 s	6a(vring)
556 vs	556 vs	557 vs	556 vs	556 vs	11′(γC-D)
509 s	505 ssh	506 ssh		ر 507 s	6b(vring)
			504 s	}	
501 s	502 s	501 s) 499 s	16b(γring) and 6b'(vring)
472 s	477 wm	476 wm	477 wm	475 wm	l6b'(vring)
444 vw	443 vw	443 vw	443 w	442 vw	18a'(αN-O)
419 s	420 s	419 s	417 s	416 s	18a(αN-O)

TABLE IV (continued)

From the infrared spectra (Table V) and in agreement with the two previous assignments, the strong band in the range 395 to 357 cm^{-1} is assigned to a metal-oxygen stretch. This stretch masks the inter-ring torsion, mode B.

The ligand mode 6a is tentatively assigned to the band of medium to strong intensity (sometimes appearing as a shoulder on the higher vM-O band) between 353 and 326 cm⁻¹. It is clearly metal-sensitive and must therefore be coupled with vM-O. Evidence for the assignment of this band to 6a is found in the frequency for the Cu(II) complex. The medium band at 326 cm⁻¹ is at a much lower frequency than is found in either the Mn or Zn complex, and therefore in complete disagreement with the CFSE order expected from a M-O stretch.¹⁵ The low frequency of the band at 326 cm⁻¹ in the Cu(II) complex may be explained by the fact that Jahn-Teller distortion leads to a change in the coupling between vM-O and 6a compared with the other complexes. This also results in a much higher decoupled M-O stretch in Cu (at 395 cm⁻¹) in comparison with the other metals. However, an alternative explanation is that both the strong band at 395 cm⁻¹ and the medium band at 326 cm⁻¹ are a result of "splitting" of the highest vM-O as a result of Jahn-Teller distortion of the

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-44-	5	u7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	-do -ds	-do -ds	Assignment
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$) 624 s (622 vs)	623 s (622 v	s) 624 s (62	vs)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	s) 584 s (565 s)	582 s (566 s) 581 s (56	s) 6a(vring)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	559 w (-)	559 w (-)	560 w (-	comb
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1) 542 m \ (506 ssh)	546 mw	539 ms \ (50	s) 6b(vring)
$ \begin{bmatrix} 16b' & 516 & (481) \\ 516 & (481) \\ 18a' & 478 & (442) \\ 18a' & 466 & (432) \\ 357s & (419s) \\ 357s & (420s) \\ 357s & (419s) \\ 311m \\ 349msh & (335msh & (335m) \\ 357s & (335m) \\ 357s & (335m) \\ 357s & (335msh & (335m) \\ 357s & (335msh & (335$	_	{(504 s		() (k/(vring)
	(501 s)		> (49	(s) { (s)
$ \begin{bmatrix} 16b & 516 & (468) \\ 18u' & 478 & (442) \\ 18u' & 478 & (442) \\ 18u & 466 & (432) \\ 357 & (320) \\ 357 & (345) \\ 357 & (345) \\ 357 & (345) \\ 357 & (345) \\ 357 & (345) \\ 357 & (345) \\ 357 & (351) \\ 357 & (371) \\ 357 & (371) \\ 378 & (371) \\ 378 & (371) \\ 378 & (371) \\ 378 & (271) \\ 229 & (10) \\ 116 & (12) & (12) \\ 22 & (110) & 135 & (10) \\ 116 & (110) & 123 & (10) \\ 116 & (110) & 123 & (10) \\ 116 & (110) & 123 & (10) \\ 116 & (110) & 123 & (10) \\ 116 & (110) & 123 & (10) \\ 116 & (110) & 123 & (10) \\ 116 & (110) & 123 & (10) \\ 116 & (110) & 123 & (10) \\ 116 & (110) & 123 & (10) \\ 116 & (110) & 123 & (10) \\ 116 & (10) & 135 & (10) \\ 116 & (110) & 123 & (10) \\ 116 & (10) & 135 & (10) \\ 116 & (10) & 138 & (10) \\ 116 & (10) & 138 & (10) \\ 116 & (10) & 138 & (10) \\ 116 & (10) & 138 & (10) \\ 116 & (10) & 138 & (10) \\ 116 & (10) & 138 & (10) \\ 116 & (10) & 138 & (10) \\ 116 & (10) & 138 & (10) \\ 116 & (10) & 138 & (10) \\ 116 & (10) & 138 & (10) \\ 116 & (10) & 138 & (10) \\ 116 & (10) & 138 & (10) \\ 116 & (10) & 138 & (10) \\ 110 & (10) & 138 & (10) \\ 110 & (10) & 138 & (10) \\ 110 & (10) & 138 & (10) \\ 110 & (10) & 138 & (10) \\ 110 & (10) & 138 & (10) \\ 110 & (10) & 138 & (10) \\ 110 & (10) & 138 & (10) \\ 110 & (10) & 138 & (10) \\ 110 & (10) & 138 & (10) \\ 110 & (10) & 138 & (10) \\ 110 & (10) & 138 & (10) \\ 110 & (10) & 138 & (10) \\ 110 & (10) & 138 & (10) \\ 110 & (10) & 138 & (10) \\ 110 & (10) & 138 & (10) \\ 110 & (10) & 138 & (10) \\ 110 & (10) & 138 & (10) \\ 110 & (10) & 138 & (10) \\ 110 & (1$	518 s		518 s	16b(yring/yN-O)
$ \begin{bmatrix} 16b & 516 & (468) \\ 18u' & 478 & (442) \\ 18u' & 478 & (442) \\ 18u & 466 & (432) \\ 357s & (345s) \\ 357s & (35s) \\ 337s & (300) \\ 337s & (24s) \\ 228w & (257w) \\ 228w & (258w) \\ 228w & (258w) \\ 228w & (258w) \\ 228w & (278w) \\ 228w & $		518s (-
$ \begin{bmatrix} 18a' & 478 & (442) & 481 m & (444 vw) & 479 m & (443 vw) & 452 s & (410) \\ 18a & 466 & (432) & 357 s & (345 s) & 367 s & (351 s) & 377 s & (359) \\ 6a & 320 & (301) & 331 m s & (311 m) & 349 m sh & (326 w sh) & 333 m sh & (335 vw) \\ 294 mw & (278 w) & 298 mw & (297 w) & 300 mw \\ 294 mw & (278 w) & 298 mw & (297 w) & 300 mw \\ 727 w & (277 w) & 298 mw & (277 w) & 280 vw & (248 v) \\ 17a' & 216 & (267) & 265 w & (258 w) & 268 w & (257 vw) & 280 vw & (248 v) \\ 17a' & 210 & (211) & 227 vw & (227 vw) & 268 w & (257 vw) & 280 vw & (248 v) \\ 17a' & 214 & (204) & 200 m s & (195 m s) & 208 m s & (205 m s) & 219 m s & (142 vv) & 158 vvw & (-) \\ 17a & 214 & (204) & 200 m s & (195 m s) & 208 m s & (205 m s) & 219 m s & (214 v) \\ 17a & 214 & (204) & 200 m s & (195 m s) & 208 m s & (205 m s) & 219 m s & (214 v) \\ 221 & 123 & (116) & 135 vvw & (-) & 135 vvwh & (-) & 138 vvwh & (-) \\ 221 & 115 & (109) & 116 w & (110 w) & 123 w & (109 w) & 128 vvwh & (-) \\ 221 & 115 & (109) & 116 w & (110 w) & 123 w & (109 w) & 128 vvwh & (-) \\ 221 & 115 & (100) & 188 w & (80 w) & 94 w & (90 w) & 100 w & (91 v) \\ 221 & 721 w & (74 w) & 73 w & (74 w) & 71 w & (72 w) \\ 221 & 61 w when & 61 w when & (-) & 00 w & 00 w & 00 \\ 221 & 221 & 721 w & 73 w & 74 w & 71 w & 77 w & 77 w & 77 w \\ 221 & 91 & 91 & 91 & 91 & 91 & 91 \\ 221 & 721 w & 73 w & 61 w when & 00 & 01 & 00 & 00 \\ 221 & 221 & 221 & 221 & 221 & 00 & 00 &$	n) (476 wm)	(477 w	m) / (47	wm) 16b'(γring/γN-O)
$ \begin{bmatrix} 18a & 466 & (432) & 452 s & (419 s) & 453 s & (420 s) & 452 s & (419) \\ 8 & 350 & (350) & 337 s & (345 s) & 367 s & (351 s) & 377 s & (359) \\ 6a & 320 & (301) & 331 ms & (311 m) & 349 msh & (326 wsh) & 333 msh & (335 s \\ 294 mw & (278 w) & 298 mw \\ & & & & & & & & & & & & & & & & & & $	i) 479 m (443 vw)	480 s (443 v	v) 479 s (44	.vw) 18a'(aN-O)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	452 s (419 s)	452 s (417 s)	452 s (41	s) 18a(αN-O)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	377 s (359 s)	395 s (379 s)	362 s (31	.wm) vM-O
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	th) 353 msh (335 wsh)	326 m (305 m) 336 ms (31	wm) 6a(vring)
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	(300 w)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	300 mw	299 vw (277 vi	w) 296 w (22	VW) NM-O
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) (282 w)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~	285 vvw (–)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<pre>/) 280 vw (248 w) </pre>		261 w (25	w) $\Gamma(ring shear)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		255 w (246 w	_	
17a 214 (204) 200 ms (195 ms) 208 ms (205 ms) 219 ms (214) $I59$ www $I59$ www $I59$ www $I16$ $I35$ www $(-)$ $(142 ww)$ $I58$ www $(-)$ Δ $I23$ (116) $I35$ vww $(-)$ $I35$ wwsh $(-)$ (132) E $I15$ (109) $I16$ w $(110 w)$ $I23$ w $(109 w)$ 128 wwsh $(-)$ Z 104 (100) 88 w $(80 w)$ 94 w $(90 w)$ $100 w$ (91) Z 104 100 88 w $(74 w)$ $73 w$ $(74 w)$ $71 w$ $(72 w)$	229 wsh (-)	Ĵ	Ţ	17a'(γN-O/γring)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	s) 219 ms (214 m)	212 mw (207 w	m) 189 s (18	ms) 17a(γ N-O/ γ ring)
$\Delta 123 (116) 135 \text{ vvw} (-) 135 \text{ vvsh} (-) (132) (132) (112) (112) (10) 123 \text{ vvsh} (-) (-) (2) (10) (2) (2) (-) (2) (-) (2) (-) (2) (-) $	r) 158 vrw (-)	159 vw (157 w	—) (<i>m</i>	NON
E 115 (109) 116 w (110 w) 123 w (109 w) 128 vwsh (-) Z 104 (100) 88 w (80 w) 94 w (90 w) 100 w (91 72 w (74 w) 73 w (74 w) 71 w (72 6I w sh	(132 vwsh)	145 vvw (130 v	v) 133 vvw (12	vwsh) Δ (ring scissors)
Z 104 (100) 88 w (80 w) 94 w (90 w) 100 w (91 72 w (74 w) 73 w (74 w) 71 w (72 61 wsh	128 vwsh (-)	129 w (-)	120 vw (11	vw) E(ring scissors)
72 w (74 w) 73 w (74 w) 71 w (72 61 wwsh	100 w (91 w)	96 w (92 w) 92 w (9	w) Z(i. rotation) or &OMO
61 rush) 71 w (72 w)	73 w (72 n) 72 w ()	3 w.) &OMO
		62 rush	62 vush	0MOS

324

TABLE V

D. A. THORNTON AND G. M. WATKINS

Cu(II) complex. Such a suggestion, however, would require an explanation for the absence of the ligand band (mode 6a) expected at ca 330 to 350 cm⁻¹.

The present ligand isotope study indicates that the former explanation is the more suitable {the $326 \text{ cm}^{-1}(-d_0)/305 \text{ cm}^{-1}(-d_8)$ band frequencies in the Cu(II) complex are typical of the ligand mode rather than of a M–O stretch}. An examination of the Fe(III) complexes for both the $-d_0$ and $-d_8$ isotopes with their higher M–O stretches at 412 (394 cm^{-1}) and $380 (371 \text{ cm}^{-1})$ shows both ligand modes 6a at $320 (305 \text{ cm}^{-1})$ and B at $355 (340 \text{ cm}^{-1})$, and so adds further support for the assignments of the $-d_0$ band between 353 and 326 cm^{-1} to mode 6a. Resolution of this assignment problem would require the use of a metal–isotope study, since if the band at $326 \text{ to } 350 \text{ cm}^{-1}$ is a ligand band which is coupled with vM–O, it will show only slight metal–isotope sensitivity (*e.g.*, with no 63 Cu/ 65 Cu sensitivity), while if the band is a relatively pure vM–O it should be significantly shifted on metal–isotope labelling.

A metal-sensitive band of weak to medium intensity found between 300 and 294 cm^{-1} in the bipyO₂ complexes is assigned to vM-O. Its frequency is such as to exclude it as a ligand mode. (The only ligand mode candidate is the shear, Γ , which is better assigned to the band between 285 and 265 cm⁻¹.) This band was not assigned by Vinciguerra *et al.*³ and was masked by vM-NCS in the study conducted by Ahuja and Singh.⁵

Of the three M-O stretches expected for D_3 symmetry, two (three in some of the deuterated spectra) are observed. The M-O bends are found below 200 cm⁻¹ in pyO.¹⁶⁻¹⁹ This region also contains three of the non-benzenoid vibrations of bipyO₂, modes Δ , E and Z,¹³ thereby making the assignments difficult. As is observed for the bipy and phen complexes,¹⁴ the metal-ligand bends are found in two regions. The highest is at about 158 cm⁻¹, and is similar in frequency to δ MON in metal(II) complexes of pyO.¹⁶⁻¹⁹ Therefore, while it is a δ OMO bend, it is likely to have a significant contribution from bending of the N-O bond and so is described in Table V as δ MON. Two bands are observed in the second region below 90 cm⁻¹. The two δ OMO bands at *ca* 70 cm⁻¹ and *ca* 60 cm⁻¹ are found at slightly higher frequency than the δ OMO bends in metal(II) complexes of pyO¹⁷ as is to be expected from the chelate effect,²⁰ and these two bands in bipyO₂ are therefore described as δ OMO. The two δ OMOs are metal-insensitive as was observed for the corresponding vibrations in pyO.¹⁷

Of the four M–O bends expected, only three are observed. This may be attributed to three causes. First, the bends may be accidentally degenerate as is observed for δ OMO in M(II)(pyO)₆ complexes.¹⁷ Secondly, the fourth δ OMO may lie beyond the range investigated. Thirdly, a band found between 100 and 80 cm⁻¹ may also be identified as δ OMO, but is considered here to be best assigned to the internal rotation, Z.

Finally, a comment needs to be made concerning the Cu(II) complex. The infrared spectrum (Table V) shows no sign of splitting of the M-O fundamentals into the six vM-O and the nine δ OMO bends expected for C_2 symmetry. The absence of such splitting in the stretches may possibly be ascribed to the different coupling within the Cu(II) complex, while the richness of the ligand spectrum in the region in which the bends are expected would make the observation of splitting of the two sets of δ OMO bands difficult. Clearly the best indication of Jahn-Teller distortion in the bipyO₂ complex with Cu(II) lies in the splitting of some of the ligand bands as a result of the perturbation of the localized ligand symmetry.

· •

ACKNOWLEDGEMENTS

We thank S.A. Goldfields Ltd. and the Foundation for Research Development of the CSIR for financial assistance.

REFERENCES

- 1. N.M. Karyannis, A.N. Speca, D.E. Chasen and L.L. Pytlewski, Coord. Chem. Rev., 20, 37 (1976).
- 2. P.G. Simpson, A. Vinciguerra and J.V. Quagliano, Inorg. Chem., 2, 282 (1963).
- 3. A Vinciguerra, P.G. Simpson, Y. Kakiuti and J.V. Quagliano, Inorg. Chem., 2, 286 (1963).
- 4. S.K. Madan and W.E. Bull, J. Inorg. Nucl. Chem., 26, 2211 (1964).
- 5. I.S. Ahuja and R. Singh, Spectrochim. Acta, 30A, 2055 (1974).
- 6. I.S. Ahuja, R. Singh and C.L. Yadava, J. Molec. Struct., 74, 143 (1981).
- 7. I. Bertini, D. Gatteschi and L.J. Wilson, Inorg. Chim. Acta, 4, 629 (1970).
- 8. A.R. Al-Karaghouli, R.O. Day and J.S. Wood, Inorg. Chem., 17, 3702 (1978).
- 9. S.W. Ng, C.L. Barnes, D. van der Helm and J.J. Zuckerman, Organometallics, 2, 600 (1983).
- 10. M. Orchin and P.J. Schmidt, Coord. Chem. Rev., 3, 345 (1968).
- 11. J.H. Nelson, L.C. Nathan and R.O. Ragsdale, Inorg. Chem., 7, 1841 (1968).
- 12. H. Irving and R.J.P. Williams, J. Chem. Soc., 3192 (1953).
- 13. D.A. Thornton and G.M. Watkins, Bull. Chim. Soc. Belg., 100, 221 (1991).
- 14. D.A. Thornton and G.M. Watkins, J. Coord. Chem., Article 49293.
- 15. D.A. Thornton, Coord. Chem. Rev., 55, 113 (1984).
- 16. A.D. van Ingen Schenau, W.L. Groeneveld and J. Reedijk, Spectrochim. Acta, 30A, 213 (1974).
- A.D. van Ingen Schenau, C. Romers, D. Knetsch and W.L. Groeneveld, Spectrochim. Acta, 33A, 859 (1977).

.

- 18. A.M. Greenaway, C.J. O'Connor, E. Sinn and J.R. Ferraro, Spectrochim. Acta, 37A, 575 (1981).
- 19. A:T. Hutton and D.A. Thornton, J. Molec. Struct., 39, 33 (1977).
- 20. C. Postmus, J.R. Ferraro and W. Wozniak, Inorg. Chem., 6, 2030 (1967).

2011

23 January

Downloaded At: 17:55